地下儲氫(Underground Hydrogen Storage-UHS),即利用地下地質(zhì)構(gòu)造進行大規(guī)模的氫能存儲。主要運作機制(見圖1):
通過可再生能源發(fā)電并制取氫氣;將氫氣注入鹽穴、枯竭油氣藏、含水層和襯砌的硬巖洞等地下地質(zhì)構(gòu)造中;實現(xiàn)氫能的儲存;有需要時可將氫氣從地下儲氫場所采出用于燃氣、發(fā)電或其他用途。
地下儲氫具備經(jīng)濟性優(yōu)勢,僅需較低開發(fā)成本即可實現(xiàn)氫氣的大規(guī)模存儲,是實現(xiàn)氫能大容量長期儲存的有效途徑。
基于不同技術(shù)路徑的地下儲氫實施方案
01鹽穴
鹽穴的存儲容量通常較小,但是可在一年時間內(nèi)多輪注入、采出,進而發(fā)揮靈活的跨期調(diào)節(jié)作用。目前包括傳統(tǒng)儲氫鹽穴(見表1)、演示儲氫的鹽穴商業(yè)設(shè)施、現(xiàn)有或退役的天然氣儲存洞穴相鄰的儲氫的鹽洞穴,混合氫合物的天然氣儲存鹽穴(見表2)等。
表1傳統(tǒng)鹽穴項目
表2其他類型項目鹽穴
國內(nèi)關(guān)于地下鹽穴儲氫的研究還處于起步階段。在我國的江蘇金壇,擁有大規(guī)模的鹽層與鹽穴資源,重慶大學(xué)與巖土所合作進行了相關(guān)研究,該研究結(jié)合以風(fēng)能為代表的可再生能源發(fā)電,將過剩電量進行大規(guī)模存儲。通過對我國江蘇金壇地域的層狀鹽巖進行研究,從地質(zhì)存儲性、穩(wěn)定性、巖洞致密性等方面對其作為UHS潛在選址的可行性進行分析與評估,嘗試發(fā)展可再生能源發(fā)電與地下氫儲能耦合這一技術(shù)路徑。
以上例子證明了在鹽穴中儲存氫氣的可行性。然而,合適的鹽洞的可用性是有限的,鹽洞需要在許多領(lǐng)域進行進一步的研究,包括評估鹽穴的完整性。此外,受制于快速循環(huán),電解產(chǎn)生的氫氣將需要更高的儲存靈活性,這使得鹽穴成為IEA目前所關(guān)注的主要方向。
02枯竭的天然氣藏
枯竭的天然氣儲層占世界天然氣總儲存容量的76%,氣田體積大于鹽穴,地理分布更廣。
項目:目前沒有商業(yè)設(shè)施可以在多孔巖石中儲存純氫。但是,存在氫氣占比超過百分之50的混合天然氣地下儲存項目,以下是相關(guān)的項目信息:
表3枯竭天然氣藏項目
此外,在愛爾蘭,Green Hydrogen Kinsale項目對枯竭氣田的儲氫潛力進行了專有評估。在意大利,Snam進行了一系列測試,確認了在其枯竭的氣田中儲存氫氣的可能性,并評估了100%濃度氫氣儲存影響的測試。
然而,氫氣的儲存比天然氣更難,這是因為其具有更高的壓縮系數(shù)、擴散系數(shù)、較低的粘度和反應(yīng)性,所以在儲氫方面的運用仍然具有挑戰(zhàn)。由于氣田的多孔性,枯竭的天然氣田不能提供大規(guī)模的短期靈活性,每年只能運行數(shù)個周期。因此,它們可以在管理供求的季節(jié)性波動和加強供應(yīng)安全方面發(fā)揮重要作用。
03含水層
含水層約占現(xiàn)有地下天然氣儲存能力的11%。含水層的地質(zhì)類似于枯竭的天然氣田。它們都是多孔沉積巖結(jié)構(gòu),但含水層含有水而不是天然氣,并且必須覆蓋不可滲透的蓋層巖石將氣體保持在地下。含水層可以通過高壓下注入氣體轉(zhuǎn)化為儲氣,其中水和巖石覆蓋層都作為安全殼。
項目:沒有正在運行的商業(yè)含水層儲存氫氣,且含水層中的純氫儲存尚未經(jīng)過測試。但是有一些相類似的項目也值得列出,在20世紀70年代,在Lobodice(捷克共和國),Engelbostel和Ketzin(德國)和Beynes(法國),使用了鹽水含水層來儲存城鎮(zhèn)天然氣。RINGS(向存儲設(shè)施中注入新氣體的研究)項目正在分析向法國teréga含水層中注入的天然氣流中添加氫氣和生物甲烷的影響。
與枯竭氣田不同,枯竭氣田因最初充滿氣體而已知是緊密的,含水層并非四面都緊密,需要進行廣泛的地質(zhì)調(diào)查以確定是否存在氣體逸出的隱患。含水層作為天然氣儲存的方案通常需要更多的緩沖氣體,在注入和抽取氣體方面同樣不具備靈活調(diào)節(jié)的作用。
04襯砌的硬巖洞
襯砌的硬巖洞用于儲存天然氣液體(丙烷,丁烷)和原油,此外,堅硬的巖洞也可以用來儲存氫氣。以下是一些相關(guān)示范項目的信息: